Quantitative evaluation of an automatic segmentation method for 3D reconstruction of intervertebral scoliotic disks from MR images
نویسندگان
چکیده
BACKGROUND For some scoliotic patients the spinal instrumentation is inevitable. Among these patients, those with stiff curvature will need thoracoscopic disk resection. The removal of the intervertebral disk with only thoracoscopic images is a tedious and challenging task for the surgeon. With computer aided surgery and 3D visualisation of the interverterbral disk during surgery, surgeons will have access to additional information such as the remaining disk tissue or the distance of surgical tools from critical anatomical structures like the aorta or spinal canal. We hypothesized that automatically extracting 3D information of the intervertebral disk from MR images would aid the surgeons to evaluate the remaining disk and would add a security factor to the patient during thoracoscopic disk resection. METHODS This paper presents a quantitative evaluation of an automatic segmentation method for 3D reconstruction of intervertebral scoliotic disks from MR images. The automatic segmentation method is based on the watershed technique and morphological operators. The 3D Dice Similarity Coefficient (DSC) is the main statistical metric used to validate the automatically detected preoperative disk volumes. The automatic detections of intervertebral disks of real clinical MR images are compared to manual segmentation done by clinicians. RESULTS Results show that depending on the type of MR acquisition sequence, the 3D DSC can be as high as 0.79 (±0.04). These 3D results are also supported by a 2D quantitative evaluation as well as by robustness and variability evaluations. The mean discrepancy (in 2D) between the manual and automatic segmentations for regions around the spinal canal is of 1.8 (±0.8) mm. The robustness study shows that among the five factors evaluated, only the type of MRI acquisition sequence can affect the segmentation results. Finally, the variability of the automatic segmentation method is lower than the variability associated with manual segmentation performed by different physicians. CONCLUSIONS This comprehensive evaluation of the automatic segmentation and 3D reconstruction of intervertebral disks shows that the proposed technique used with specific MRI acquisition protocol can detect intervertebral disk of scoliotic patient. The newly developed technique is promising for clinical context and can eventually help surgeons during thoracoscopic intervertebral disk resection.
منابع مشابه
Watershed Segmentation of Intervertebral Disk and Spinal Canal from MRI Images
A robust method to segment intervertebral disks and spinal canal in magnetic resonance images is required as part of a precise 3D reconstruction for computer assistance during diskectomy procedure with minimally invasive surgery approach. In this paper, an unsupervised segmentation technique for intervertebral disks and spinal canal from MRI data is presented. The proposed scheme uses a watersh...
متن کاملQuantitative Comparison of SPM, FSL, and Brainsuite for Brain MR Image Segmentation
Background: Accurate brain tissue segmentation from magnetic resonance (MR) images is an important step in analysis of cerebral images. There are software packages which are used for brain segmentation. These packages usually contain a set of skull stripping, intensity non-uniformity (bias) correction and segmentation routines. Thus, assessment of the quality of the segmented gray matter (GM), ...
متن کاملA multi-scale convolutional neural network for automatic cloud and cloud shadow detection from Gaofen-1 images
The reconstruction of the information contaminated by cloud and cloud shadow is an important step in pre-processing of high-resolution satellite images. The cloud and cloud shadow automatic segmentation could be the first step in the process of reconstructing the information contaminated by cloud and cloud shadow. This stage is a remarkable challenge due to the relatively inefficient performanc...
متن کاملA hierarchical Convolutional Neural Network for Segmentation of Stroke Lesion in 3D Brain MRI
Introduction: Brain tumors such as glioma are among the most aggressive lesions, which result in a very short life expectancy in patients. Image segmentation is highly essential in medical image analysis with applications, particularly in clinical practices to treat brain tumors. Accurate segmentation of magnetic resonance data is crucial for diagnostic purposes, planning surgical treatments, a...
متن کاملA hierarchical Convolutional Neural Network for Segmentation of Stroke Lesion in 3D Brain MRI
Introduction: Brain tumors such as glioma are among the most aggressive lesions, which result in a very short life expectancy in patients. Image segmentation is highly essential in medical image analysis with applications, particularly in clinical practices to treat brain tumors. Accurate segmentation of magnetic resonance data is crucial for diagnostic purposes, planning surgical treatments, a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 12 شماره
صفحات -
تاریخ انتشار 2012